My '67 Coupe
#24
Basic Concepts Behind the Binary System
To understand binary numbers, begin by recalling elementary school math. When we first learned about numbers, we were taught that, in the decimal system, things are organized into columns:
H | T | O
1 | 9 | 3
such that "H" is the hundreds column, "T" is the tens column, and "O" is the ones column. So the number "193" is 1-hundreds plus 9-tens plus 3-ones.
Years later, we learned that the ones column meant 10^0, the tens column meant 10^1, the hundreds column 10^2 and so on, such that
10^2|10^1|10^0
1 | 9 | 3
the number 193 is really {(1*10^2)+(9*10^1)+(3*10^0)}.
The binary system works under the exact same principles as the decimal system, only it operates in base 2 rather than base 10. In other words, instead of columns being
10^2|10^1|10^0
they are
2^2|2^1|2^0
To understand binary numbers, begin by recalling elementary school math. When we first learned about numbers, we were taught that, in the decimal system, things are organized into columns:
H | T | O
1 | 9 | 3
such that "H" is the hundreds column, "T" is the tens column, and "O" is the ones column. So the number "193" is 1-hundreds plus 9-tens plus 3-ones.
Years later, we learned that the ones column meant 10^0, the tens column meant 10^1, the hundreds column 10^2 and so on, such that
10^2|10^1|10^0
1 | 9 | 3
the number 193 is really {(1*10^2)+(9*10^1)+(3*10^0)}.
The binary system works under the exact same principles as the decimal system, only it operates in base 2 rather than base 10. In other words, instead of columns being
10^2|10^1|10^0
they are
2^2|2^1|2^0
Thread
Thread Starter
Forum
Replies
Last Post
VAEM
Ford Mustang Pictures and Videos
9
05-18-2010 10:46 PM